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1. INTRODUCTION 
 

Card shuffling is a craft that has captivated magicians, casinos, and cardists for ages. The art of deck 
manipulation has intrigued those familiar with cards to the point where hundreds of different methods of card 
manipulation have been perpetuated over the last century. Of these methods, the Faro shuffle, or the “perfect 
shuffle” stands out as one of the more unique types of card manipu\lation. Unlike a traditional “riffle shuffle,” 
the Faro perfectly interlaces the cards from the halves of the deck. Other shuffles like a non-perfect riffle may give 
2 or 3 cards in one clump, randomizing the deck. The Faro shuffle has an interesting property: 8 “normal” Faro 
shuffles performed on a standard deck of 52 cards, will return that deck to its original state. The goal of this 
paper is to examine why perfect shuffles have this property, and what other properties they may have. 

In this paper, we’ll explore various ways the position of a card in a given deck can be modeled as perfect 
shuffles are carried out. We’ll also develop formulae to model the cyclical path of cards and card trajectory as the 
deck is perfectly shuffled.  To conclude, we’ll model several theorems for decks of any size.  

 
Abstract 

 
​ Decks of cards seem like casual objects, but in the early 18th  century, a unique type of shuffle called a 
perfect or Faro shuffle was created. This shuffle returns a previously  unshuffled deck towards again being 
unshuffled after 8 shuffles, and though this seems like a simple coincidence, the Faro shuffle is a special sorting 
algorithm that holds a similar restorative property for every deck size. Previously on the topic, researchers have 
recorded the equations for Faro shuffles as a conditional modulus function, which could also be represented in 
piecewise or floor/ord notation. Researchers have established two different types of faro shuffles: out shuffles, 
which we call normal shuffles, and in shuffles, which we call alternate shuffles. Shuffle numbers are denoted by 
binary representation using cycle and orbital context of given shuffle paths. Algorithms have also been found to 
control card position through binary tree notation, however we present a more rigorous and simple proof on the 
subject. Our proof of card I benign forces to position index J provides a special case of a reverse BFS sorting 
algorithm. Our team used a mix of code for bashing and pattern-finding, and number theory to represent the 
maximum and minimum shuffle numbers using Euler's totient function. Our method gives a rigorous approach 
towards proving the existence of resolvable shuffles for all, as well as allowing for specific cases where we 
guarantee a given occurrence of minimum shuffles. Also, as a deviation into the concept of card cycles, we 
recognize that future work could be done on a more powerful approach to denoting minimal shuffles as the 

 



 
 

LCM of list cycle length for decks of n size. Further expansions on the work could also yield better algorithms 
using a special case of the discrete logarithm problem.   

 
 
 

 2. FOUNDATIONAL RESULTS AND OBSERVATIONS 
 
To begin, let's distinguish the types of perfect shuffles. We will assume by default that a perfect shuffle will be a 
Normal Shuffle unless otherwise stated. 
 

Definition: A Normal shuffle cuts and interlaces the two halves of the deck perfectly, with the top card  
of the top half of the original deck occupying the top position of the newly shuffled deck. 
 

 
 

Definition: An Alternate Shuffle cuts and interlaces the two halves of the deck perfectly, with the top 
card of the bottom half of the original deck occupying the top position of the newly shuffled deck. 

 

​  
Definition: An Odd Shuffle is a shuffle where the deck has an odd number of cards. In a normal odd 
shuffle, the middle card belongs to the top half of the deck, and the bottom half is interlaced between 
each space within the top half of the deck. The top and bottom cards on the deck consequently belong 

 



 
 

to the top half. In an alternate odd shuffle, the middle card belongs to the bottom half of the deck, and 
the top half is interlaced between each space within the bottom half of the deck. The top and bottom 
cards on the deck consequently belong to the bottom half. Below is a normal odd shuffle.  

We quickly made a conjecture which we later proved to be true: Any deck of  cards has a number of perfect 𝑛
shuffles , to  return to its original state 𝑠
 
We will go through the proof after covering other essential theorems and concepts. 
 
The first is a simple Lemma regarding fixed cards. 
 
Lemma 1: The top and bottom cards in an even deck, will never change in position regardless of the number of 
times the deck is shuffled while doing a normal shuffle 
 
Proof: 
Because the top card of a given deck will always go above the top card of the second half of the deck when 
performing a perfect shuffle, no amount of normal perfect shuffles will be enough to displace the top card. 

Likewise, because the bottom card of a given deck must always be below the bottom card of the first 
half of the deck by definition of a normal shuffle, no card will ever be able to be below the bottom card.  
​ Therefore, both the top and bottom cards of a given deck must remain in their position when doing a 
normal shuffle. 
 
This fixed card lemma is important because it proposes a different question. It makes us ask what the other cards 
within the deck do during this shuffle. Below is a simple transcription of a piecewise equation to model shuffling 
within a card deck. 
 
Piecewise Shuffle Theorem: The new indices of each card can be modeled by the piecewise functions  for 2𝑖
the first half of the deck (including the middle card if the deck has an odd number of cards), and the second half 
can be found with 2i - n, assuming the indices start with 0. 
 
Proof:  

 



 
 

The first step of the perfect shuffle is to dilate the deck by multiplying the indices by 2, leaving gaps to interlace 
the cards. Then, the “stretched out” bottom half of the cards is interlaced into the “stretched out” top half by 
shifting the indices of the bottom half back . Therefore, the expression for the new index of the top half is , 𝑛 2𝑖
and for the bottom half, it is . 2𝑖 − 𝑛
 
This proof should provide us with a simple theorem with which to view the mechanics of the shuffle itself. As 
we  
 
 

  3. MECHANICS OF SHUFFLING  
 

To truly appreciate the mechanics of a shuffle, we must first understand the correlations between different types 
of shuffles. Decks of odd numbers are quite intriguing, because, unlike even decks, their bottom card is 
unconserved. However, this poses an opportunity to visualize odd shuffles more easily: 
 
Steven-Todd Theorem: For a deck of size , where  is an odd number, the number of shuffles needed to 𝑛 𝑛
resolve the deck of size n will be the same as the number of shuffles needed to resolve a deck of size  (𝑛 + 1)
 
Proof:  

Consider a deck with an even number of cards . The normal shuffle of such a deck would proceed as 𝐸
follows: The deck would be divided in two, and interlaced as usual. The top and bottom cards would remain 
consistent regardless of the number of shuffles, or deck size. 

Recall that the bottom card of a perfectly shuffled even-sized deck stays consistent. The case for a 
normally shuffled odd deck is the same as the even deck, except that the bottom card is missing. This is good for 
our purposes, however. Because the bottom card is always constant, we essentially can ignore it. In a normal 
shuffle with an even deck of cards, the middle n-2 cards of the deck will be the only cards that are shuffled. The 
top and bottom simply remain at their positions.  

If one card is removed from the deck, then the deck will be odd and the bottom half will no longer have 
the bottom card. This means that the shuffle will simply be the same as the normal shuffle above it in terms of 
the number of shuffles. The only difference between the decks is whether the bottom card is present or not. 
 
The odd-even pattern shows us the correlation between similar types of shuffles, however in order to calculate 
the number of shuffles at all, one requires a useful method. The previous piecewise approximation, though 
surely important, is not nestable, and therefore it is recursive instead of explicit. In order to fix this, we first have 
to picture the true arrangement of the cards. The piecewise function acts as a clean signifier of the ability to roll 
value over after the maximum index of n-1 has been reached, however, there are other functions that are suitable 
for the purpose. The most useful for our purposes would be a function using the modulo operation. 
 

 



 
 

Card-Stacking Theorem: The Explicit function giving the index  after  normal shuffles (assuming normal 𝑖
𝑠

𝑠

perfect shuffles), where  (deck size) is an even number, and  is the initial index (assuming indices go from 0 to 𝑛 𝑖
0

n-1), can be modeled by: 

 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛 − 1) 

with the exception of the bottom card, which remains in place instead of going to index 0. 
 
If  is odd, it is: 𝑛

 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛) 

 
Proof:  
Before finding the explicit formula, we can start with a recursive formula. Following the logic of dilating the 
deck, the index is multiplied by 2. 

 If twice the previous index is out of the range of the deck, then it can be shifted back into the deck either by 
using piecewise logic like in the Piecewise Shuffle Theorem, or by utilizing modular arithmetic to expand it to a 
greater number of recursions.  

For the even case, this would be modulo , and for the odd case, it would be modulo . This results in (𝑛 − 1) (𝑛)

the recursive formula being s+1 = 2is mod (n-1) for even deck size, or s+1 = 2is mod (n) for odd deck size. Since 𝑖 𝑖
there is a factor of 2 for each recursion, this can be expressed as exponentiation in the explicit formula.  

 



 
 

Let q the initial index be i0, and the number of shuffles, or in other words, the number of recursions applied, is s. 

The explicit formula is if n is even, with the exception of the bottom card, which 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛 − 1) 

remains in place instead of going to index 0, and if n is odd. 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛) 

 
These ideas are further extended as follows. 
 
Extended Card-Stacking Theorem: The Explicit function giving the index  after  alternate shuffles 𝑖

𝑠
𝑠

(assuming normal perfect shuffles), where  (deck size) is an even number, and  is the initial index (assuming 𝑛 𝑖
0

indices go from 1 to n), can be modeled by: 

 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛 + 1) 

with the exception of the bottom card, which remains in place instead of going to index 0. 
 
If  is odd, it is: 𝑛

 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛) 

 
Now, from our original piecewise dynamic, we have a concrete method of shuffle tracking. These functions are 
incredibly useful, especially because of their ability to be used somewhat explicitly. 
 

4. MINIMUM SHUFFLES 

 
With a concrete understanding of the problems at hand, we now have a  

 
Foolproof Magic Theorem: Any deck of  cards has a number of normal perfect shuffles , to  return to its 𝑛 𝑠
original state. 
 
Proof: 
Let  be the minimum number of perfect shuffles for the deck to return to its original state, and be any given 𝑠

𝑚
𝑖 

index. If  is even, then by the Card-Stacking Theorem, this would require there to be a value  such that 𝑛 𝑠

, which means .  Since  is odd, this means 2 and  𝑖 = 𝑖 * 2𝑠 𝑚𝑜𝑑 (𝑛 − 1) 2ϕ(𝑛) = 1 𝑚𝑜𝑑 (𝑛) 𝑛 − 1 𝑛 − 1
are coprime.  

Therefore, Euler’s Theorem can be applied to determine that , where   is the 2φ(𝑛−1) = 1 𝑚𝑜𝑑 (𝑛 − 1) φ(𝑛)
Euler totient function. This shows that  is the maximum possible value for s, and we can conclude φ(𝑛 − 1)
that s is a divisor of , or .  If  is odd, then a similar logic can be applied, since 2 and  φ(𝑛 − 1) 𝑠 | φ(𝑛 − 1) 𝑛 𝑛
would be coprime, to determine that . 𝑠 | ϕ(𝑛)

 



 
 

Another way of expressing the solution is using the number theory function ordna, which is defined as the 

smallest positive integer m ≥ 1  such that . For the even case, the solution is s = ordn-12, and for 𝑎𝑚 = 1 𝑚𝑜𝑑 (𝑛)
the odd case, it is s = ordn2. 
 
Extended Foolproof Magic Theorem: 
 
 Any deck of  cards has a number of alternate perfect shuffles , to  return to its original state. 𝑛 𝑠
 
Proof: 
Let  be the minimum number of perfect shuffles for the deck to return to its original state, and be any given 𝑠

𝑚
𝑖 

index 1 ≤ i ≤ n. If  is even, then by the Extended Card-Stacking Theorem, this would require there to be a value 𝑛

 such that , which means .  Since  is odd, this means 2 𝑠 𝑖 = 𝑖 * 2𝑠 𝑚𝑜𝑑 (𝑛 + 1) 2𝑠 = 1 𝑚𝑜𝑑 (𝑛 + 1) 𝑛 + 1
and  are coprime.  𝑛 + 1

Therefore, Euler’s Theorem can be applied to determine that , where   is the 2φ(𝑛+1) = 1 𝑚𝑜𝑑 (𝑛 + 1) ɸ(𝑛)
Euler totient function. This shows that  is the maximum possible value for s, and we can conclude φ(𝑛 + 1)
that s is a divisor of , or .  If  is odd, then a similar logic can be applied, since 2 and  φ(𝑛 + 1) 𝑠 | φ(𝑛 + 1) 𝑛 𝑛
would be coprime, to determine that . 𝑠 | φ(𝑛)

Another way of expressing the solution is using the number theory function ordna, which is defined as the 

smallest positive integer m ≥ 1  such that . For the even case, the solution is s = ordn+12, and for 𝑎𝑚 = 1 𝑚𝑜𝑑 (𝑛)
the odd case, it is s = ordn2. 
 
Despite there not being a generalized solution for sm (which is interestingly a special case of the unsolved discrete 
logarithm problem in cryptography), there are special cases of n for which there exist formulas for sm. Here are 
some which we found: 
 

Odd Power Theorem: If n is an odd power of 2, or  where p is odd, then the deck will not go through a 𝑛 = 2𝑝

reversal state, and the deck will take  shuffles to resolve. 𝑝
 
Proof: 

Since  is even, by the Card-Stacking Theorem, . Let it cycle in s shuffles ( ), 𝑛 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛 − 1) 𝑖

𝑠
= 𝑖

0

and since , this means that , which can be expressed as . 𝑛 = 2𝑝 2𝑠 = 1 𝑚𝑜𝑑 (2𝑝 − 1) 2𝑠 = 1 +  (2𝑝 − 1)𝑘
Iterate through values of k to find a minimum value for s. 

If , then , which is not a valid solution since that just means not shuffling the deck at 𝑘 = 0 2𝑠 = 1 → 𝑠 = 0

all. Next, checking k = 1, . 2𝑠 = 1 +  (2𝑝 − 1) = 2𝑝  → 𝑠 = 𝑝

 



 
 

 

Primitive Deck Theorem: The minimum shuffles for a deck to cycle is  for even  or 𝑠 = φ(𝑛 − 1) 𝑛
 for odd , if and only if 2 is a primitive root of n-1 is n is even or n if n is odd. 𝑠 = φ(𝑛) 𝑛

 
Proof: 
Definition 1  Let a, n be integers, n ≥ 1 such that gcd(a,n) = 1. If ordmodulo2 = modulo  , we say a is primitive root 
mod n. 

In the Card-Stacking Theorem, we determined that the minimum shuffles s is of the form ordn-12 for even n and 
ordn2 for odd n. If 2 is a primitive root of n-1 for even n or n for odd n, then ordn-12 = 𝜑(n-1) if n is even or ordn2 
= 𝜑(n) if n is odd.  

No simple general formula to compute primitive roots modulo n is known, but one can test whether 2 is a 
primitive root of n-1 if n is even or n if n is odd by checking the powers of 2 modulo n/n-1 up to 𝜑(n)/𝜑(n-1). If 
it is, then s = 𝜑(n-1) for even n and s = 𝜑(n) for odd n. 

 

5. CARD FORCING 

 

Alternative Primitive Deck Theorem: Using alternate shuffles, any card i can reach any index 1 ≤ i ≤ n  if and 
only if 2 is a primitive root of n+1 if n is even or n if n is odd.  
 
Proof: 
Definition 2 Suppose a and n ≥ 1 are integers such that gcd(a, n) = 1 and a is a primitive root mod n. Then 

 forms a complete reduced residue system mod n. 1,  𝑎1,  𝑎2,  ...  ,  𝑎φ(𝑛)−1

 
Definition 3 A complete reduced residue system is a group of integers that contains every integer possible mod n, 
as in . 0, 1, 2,  ...  ,  𝑛 − 2, 𝑛 − 1 𝑚𝑜𝑑 𝑛
 

Consider the proof for the even case. Assuming indices are 1 ≤ i ≤ n, , where n is an 𝑖
𝑠
 = 𝑖

0
* 2𝑠 𝑚𝑜𝑑 (𝑛 + 1)

even number of cards in the deck, i0 is the initial index, and is is the index where it will be after s shuffles. If 2 is a 
primitive root of n+1, then the minimum shuffles s for the deck to cycle is 𝜑(n+1) since 

 by the Extended Card-Stacking Theorem. By Definition 2, the powers of 2 would 2φ(𝑛+1) = 1 𝑚𝑜𝑑 (𝑛 + 1)
also form a complete reduced residue system mod n+1. What this means is that for a certain number of shuffles 0 
≤ s ≤ 𝜑(n+1) - 1, any index i0 can reach any index is in the deck.  𝑠

𝑚
= ɸ(𝑚𝑜𝑑𝑢𝑙𝑜)

 

 



 
 

However, we may seek a more appropriate and universal approach to more powerfully solve this problem. 

 

Lemma: Cycles 
Recall the ability for a normal shuffle to shuffle and then unshuffle any deck of n cards with m 

minimum shuffles. This ability can be viewed in another way, through the lens of card cycles. 
To illustrate, we take a deck of 52 cards and apply a normal shuffle. 

The card at i =0, will remain where it is. The card at i = 1, will move to i = 2, then i = 4, then i = 8, then i = 16, 
then i = 32, and so on until the shuffles return the card to its original position at i = 1 within the deck.  

If we transcribe this motion for every card using lists, we see this: 
 
[0] - 1 cycle 

[1, 2, 4, 8, 16, 32, 13, 26, 1] - 8 cycle 

[3, 6, 12, 24, 48, 45, 39, 27, 3] - 8 cycle 

[5, 10, 20, 40, 29, 7, 14, 28, 51] - 8 cycle 

[9,18, 36, 21, 42, 33, 15, 30, 9] - 8 cycle 

[11, 22, 44, 37, 23, 46, 41, 31, 11] - 8 cycle 

[17, 34, 17] - 2 cycle 

[19, 38, 25, 50, 49, 47, 43, 35, 19] - 8 cycle 

[51] - 1 cycle 

 
 
() 
These are known as cycles.  
 
Definition: Cycles 

-​ Cycles are the full-length path of a given set of cards as they are shuffled through a deck.  
-​ For example, the card in indicie 1 will go to 2, 4, 8, 16, etc., and eventually reposition at i = 1 after 8 

shuffles.  
-​ Likewise, every other number within the list will follow that cycle until they also reposition themselves 

at their initial index. For example, the card at i = 2, will be shifted to i = 4, and then to i = 8 and 
eventually it will reposition itself at i = 2, similarly to each number within the cycle set. 

-​ Cycles are represented by the format: []  x cycle where x is the number of shuffles needed to resolve a 
cycle. The card values are included in the list 

 
Because each list is essentially a catalog of cards, and because all cards must be included in a list, we 

know that the total number of cards n in a deck must be because of the total additive of the cycle numbers. In 
this case, 1+8+8+8+8+8+2+8+1 = 52. Also, we know that a cycle must be resolved. By definition, a cycle must 
not intersect another cycle, and no two cycles share an element. 

There are two possibilities for cycle intersection, and we can easily disprove both.  

 



 
 

1.​ The first one is where a cycle simply fuses with another one. In this case, it would generate a cycle with 
the additive length of both cycles. However, this would create a bigger cycle, and at that point, it would 
be easier to label this as a single cycle from the origin instead of 2 which had been fused.  

2.​ The second case is, where a cycle transposes to a different cycle and does not resolve. This is impossible 
by cycle definition, and because of the earlier proof that for all decks, some number m of minimum 
perfect shuffles resolve a deck.  

 
Recall that it takes exactly 8 normal perfect shuffles for a standard deck of 52 cards to return to its 

original state.  
A majority of the cycles also end in 8 shuffles, simply because that is the Sm for the deck size of 52. This 

is because, if the cycle was longer than 8, then by the 8th shuffle each card in the cycle would not return to its 
initial position. However, the cycle can be shorter as demonstrated by the i = 0, 7, and 51 cycles. However, for 
these cycles to resolve themselves within 8 shuffles, they must be factors of m which in this case is 8.  

This presents an interesting argument. If cycles must be factors of the minimum number of shuffles m, 
then the value of m can simply be found by taking the LCM of all cycle numbers.  
​ The most valuable and surprisingly intuitive part of this lemma, for now, will be this resultant 
statement: Because each cycle is a closed loop, and because each deck must have cycles if a shuffler has an amount 
of shuffles  m, they can force a card to access every indicie within the cycle it is presently occupying. ≤
Furthermore, any deck that resolves itself with either normal or alternate shuffling must have at least 1 cycle of 
cards simply because each card must—after a number of shuffles m—return to its original indices. 
 
Lemma: Binary Tree 
 
 Consider the two types of shuffles performable upon a standard deck of cards. We can perform a Normal 
perfect shuffle or an Alternate perfect shuffle. We can therefore represent this shuffling in the format of a binary 
tree. 
 
A graphic for 52 cards of represented as follows: 
 

 



 
 

 
The top number of this deck is at i = 0, and because of this, it has the option of choice. As you can see, 

all numbers are depicted as being a subchoice of option 0 through a combination of either a normal or alternate 
shuffle. This works in principle for any deck of size n, because all even numbers and odd numbers can be 
depicted as 2x and 2x+1 respectively where x is some whole number. By adding 0, you gain 1 and 2, and by 
inputting those you gain 3, 4, 5, and 6. Recursively, you could find every Natural number for n .  ≤ ∞

This means that to guarantee that a card may be forced to any slot within the deck, one simply has to get 
their card to i = 0.  

 
Lemma: zero, zero, it’s our hero 
​ Recall that our ability to force any card to any location in the deck is easiest when the card starts at index 
i = 0. This means, that if there is a way to consistently return the card to 0 using a combination of normal and 
alternate shuffles, then we can completely force the index of a given card.  
​ Let us reframe the problem to make it easier to solve. Instead of the standard binary tree that we had 
presented previously, let us label each “layer” of the tree. 
 

 



 
 

 
To move any card index to 0, we will need to iteratively decrease the card’s layer. To do this, we will 

prove that for layer L where L  1, a card will always be able to travel to layer L-1 using normal or alternate ≥
shuffles.  

First, take a random node on the tree. The node will have a corresponding layer, but more importantly, 
it will have a way to reach it by either an alternate or normal shuffle. For example, a card represented by node 25 
could be reached by alternate shuffling it from node 12. 

Here, the principle of cycles is incredibly important. Recall that by Lemma: Cycles, each deck 
resolvable by a function(normal or alternate shuffling)  must have at least 1 cycle resolvable by that function, and 
that all cards within the deck must be contained within a cycle. Therefore, if a binary tree was constructed for a 
deck of size n, every node would be part of a cycle. 

Because each node on the tree must have at least one way to reach it through alternate or normal 
shuffling, and because each index on the tree must belong to a cycle, we can say that if two nodes are joined by an 
operation, (either a normal or alternate shuffle), they must belong to the same cycle of that operation.  

Therefore, for a node on rung L, there will be a connection to a node on L-1. The nodes will either be 
connected by the Normal Shuffle operation, or by the Alternate shuffle operation. If the same operation used to 
connect both nodes is continuously used, the cycle will eventually resolve, and place the card in the node on the 
rung  L-1. By induction, it must be true that from any rung, you will be able to move higher up on the tree, and 
therefore you must be able to reach 0. 

Therefore, because it is always possible to guarantee a card to the 0th index of the deck, by Lemma: 
Binary Tree it is also always possible for a card at any position within a deck of size n to be controlled to any 
other position with a number of normal and alternate shuffles. 

 



 
 

  𝑠
𝑚

= ϕ(𝑚𝑜𝑑𝑢𝑙𝑢𝑠)

 
​ ​    ​ ​        [CONCLUSIONS] 
Ultimately, though there are still several questions regarding perfect shuffles, this paper has examined 

many things about them. We have delved into equations to transcribe card movement, possibilities for solving 
the minimum shuffles question, and even proved the ability to force a card to any position for any n-sized deck. 
Though this problem still has many open variations, especially about the minimum shuffles question and the 
Discrete logarithm Problem, this paper has provided a deeper insight into the inner workings of card shuffling, 
and the mechanics of sorting algorithms. 

 
 
 
Lemmas: 
​  
Lemma: 0 and N-1 
 
​ Take a deck with  cards. If  must be even, then n can be represented as  where  is one-half the size 𝑛 𝑛 2ℎ ℎ
of the deck. Therefore ½ of the deck will be equal to some value . ℎ
 
A normal shuffle is a shuffle where the bottom half of the deck is interlaced between each space within the top 
half of the deck, with the top half taking the first card. Both halves of the deck, as stated earlier must be equal. 
 
This graphic depicts such a shuffle: 
 
 
 
Because the top half of the deck will always take the first card, and, because the first card in the deck will always 
be in the top half, for a normal shuffle on an even deck, the first card will remain in the same position no matter 
how many shuffles are done. 

 

 



 
 

Likewise, the bottom card in the shuffled deck will always remain at the bottom because the last card in the 
bottom half of the deck will always have to remain under every other card. No cards can be added after that card 
and no card can take its position, meaning that it must remain at the last slot no matter how many shuffles are 
done. 
 
 
 
 

Appendix/References: 
 
Variables:  
 
​  - The number of cards in a given deck 𝑛
​  
​  - The number of shuffles performed on a given deck 𝑠
 

 - The minimum number of shuffles needed to be performed on a given deck to return it to its 𝑠
𝑚

original state  
 
​  - The index of a given card 𝑖
 
​  - The index of a given card after  amount of shuffles 𝑖

𝑠
𝑠

 
Intro to Modular Arithmetic (from Brilliant)  
 
Euler Totient Function (from Art of Problem Solving)  
 
Euler’s Theorem (from Art of Problem Solving) 
 
Order,  Complete Reduced Residue Systems, Primitive Roots (from AwesomeMath)  
 
Code (Google Colab)  

 

https://brilliant.org/wiki/modular-arithmetic/
https://artofproblemsolving.com/wiki/index.php/Euler%27s_totient_function
https://artofproblemsolving.com/wiki/index.php/Euler%27s_Totient_Theorem
https://drive.google.com/file/d/14qqeh_0iAUekOHWyopYyvK8RnM9MkGHd/view?usp=sharing
https://colab.research.google.com/drive/1yLFgZSbNAymVdKC9BpmhCWpUoIs1VwDK?usp=sharing

